Study reveals unexpected fire role in longleaf pine forests

By Beth Gavrilles
The longleaf pine forests of the southeastern U.S. depend on frequent fire to maintain their structure and the diversity of plants and animals they support. New research from the University of Georgia has found that fire may be playing another, unexpected role: releasing excessive nitrogen that appears to have accumulated as a legacy of prior land use.

“It was not what we were expecting,” said senior author Nina Wurzburger, an associate professor in the Odum School of Ecology. “We first were wondering whether there was enough nitrogen fixation to balance nitrogen losses from fire, and now our hypothesis is that fire might be necessary to remove excess nitrogen from these ecosystems. We basically turned the question on its head.”

“We came to the conclusion that fire might be getting rid of excess nitrogen,” said Wurzburger. “Most of the longleaf pine that exists today has been planted, and those areas have legacy effects of agriculture or grazing or fire exclusion. Our research is suggesting that all those things, and nitrogen deposition too, have put too much nitrogen in the ecosystem. So maybe we should think about fire as a management tool to remove nitrogen that accumulated historically, and to help return these ecosystems to their natural nitrogen-poor state.”

Understanding the interacting role of fire and historical disturbances in longleaf ecosystems is important for several reasons, including carbon sequestration and the conservation of biodiversity: longleaf savannas can contain more than 40 species of plants in a square meter, and harbor a number of rare species of plants and animals, including the federally endangered red cockaded woodpecker.

Source: Study reveals unexpected fire role in longleaf pine forests – Phys.org, 2019-07-31