Sizing Up Biofuel Markets

By Tim Portz
The combined export value of wood pellets, ethanol and biodiesel for U.S. producers has flirted with $3 billion since 2012, and depending upon how the final numbers shake out for last year, 2016 may very well be the year this milestone is surpassed. For both wood pellets and fuel ethanol, export numbers have never been higher than they are right now, and all three sectors are eyeing foreign markets as a means to significantly grow their businesses.

An analysis of the same data reveals key and informative differences. While foreign markets are an important part of the overall market picture for fuel ethanol and biodiesel producers, exports account for less than 10 percent of annual production while, from a volumetric perspective, wood pellet production in the U.S. is heavily reliant on foreign markets.

Now, the looming question is, what impact will a Trump administration, which campaigned on a promise to revisit the nation’s trade agreements, have on the export opportunities for each of these industries?

Global Market Leaders
In both the fuel ethanol and wood pellet categories, the U.S. can boast the largest production capacity and the largest share of the global export market. In both cases, U.S. exports outstrip the closest competitor by a wide margin. Wood pellet export volumes for U.S. producers were well over 4 million tons, while Canada has yet to surpass 2 million tons of exports. Brazil is the world’s second leading producer of fuel ethanol, and while production and export volumes there vary from year to year, in 2015, its export volumes were about half of what U.S. producers achieved. Additionally, Brazil is a prominent market for U.S. ethanol producers taking over 100 million gallons in 2015.

Source: Sizing Them Up |, 2017-03-27

Enzyme shows promise for efficiently converting plant biomass to biofuels

To make biofuels, tiny microbes can be used to break down plant cells. As part of that digestive process, specialized enzymes break down cellulose—a major molecule that makes plant cell walls rigid. Scientists showed that an enzyme, from the bacterial glycoside hydrolase family 12, plays an unexpectedly important role in breaking down a hard-to-degrade crystalline form of cellulose. Surprisingly, the enzyme breaks apart the cellulose via a random mechanism unlike other hydrolases.

Breaking down cellulose is a major challenge in developing more efficient strategies for converting plant biomass to fuels and chemicals. The discovery of a specialized enzyme that is highly effective at breaking down rigid plant cell wall components could be harnessed to solve this challenge.

Source: Enzyme shows promise for efficiently converting plant biomass to biofuels –, 2017-01-24

Unraveling the Science behind Biomass Breakdown

RIVERSIDE, Calif. ( — Lignocellulosic biomass—plant matter such as corn residues, grasses, straws, and wood chips—is an abundant and sustainable waste product ideal for the production of renewable fuels and chemicals. But breaking down biomass, through a process known as pretreatment, is one of the most expensive and energy-intensive steps in its conversion to renewable products.
In research published recently in the Journal of the American Chemical Society, a team from the U.S. Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) and the University of California, Riverside (UCR) has now discovered new mechanisms that assist in biomass breakdown during aqueous pretreatment.

Source: UCR Today: Unraveling the Science behind Biomass Breakdown