New research unlocks forests’ potential in climate change mitigation

By Scott Miller
New insights into the impact forests have on surface temperature will provide a valuable tool in efforts to mitigate climate change, according to a new research paper co-authored by Clemson University scientist Thomas O’Halloran.

For the first time, scientists have created a global map measuring the cooling effect forests have by regulating the exchange of water and energy between the Earth’s surface and the atmosphere. In many locations, this cooling effect works in concert with forests’ absorption of carbon dioxide. By coupling information from satellites with local data from sensors mounted to research towers extending high above tree canopies, O’Halloran and his collaborators throughout the world have given a much more complete, diagnostic view of the roles forests play in regulating climate.

Their findings have important implications for how and where different types of land cover can be used to mitigate climate change with forest protection programs and data-driven land-use policies. Results of their study were recently published in the journal Nature Climate Change.

Source: New research unlocks forests’ potential in climate change mitigation – Clemson University News and Stories, 2017-04-19

Why the massive Canadian boreal forest differs from the boreal forest in Northwestern Europe

Rudy Boonstra has been doing field research in Canada’s north for more than 40 years.

Working mostly out of the Arctic Institute’s Kluane Lake Research Station in Yukon, the U of T Scarborough Biology Professor has become intimately familiar with Canada’s vast and unique boreal forest ecosystem.But it was during a trip to Finland in the mid-1990s to help a colleague with field research that he began to think long and hard about why the boreal forest there differed so dramatically from its Canadian cousin. This difference was crystallized by follow-up trips to Norway.”Superficially they look the same. Both are dominated by coniferous trees with similar low density deciduous trees like aspen. But that’s where the similarities end,” he says.The real differences are most obvious on the ground, notes Boonstra. In Canada, the ground is dominated by tall shrubs like willow and birch but in the Northwestern European forests found in Norway, Finland and Sweden the ground is dominated by dwarf shrubs like bilberry.

Source: Why the massive Canadian boreal forest differs from the boreal forest in Northwestern Europe – Phys.org

Large forest die-offs can have effects that ricochet to distant ecosystems

Major forest die-offs due to drought, heat and beetle infestations or deforestation could have consequences far beyond the local landscape.

Wiping out an entire forest can have significant effects on global climate patterns and alter vegetation on the other side of the world, according to a study led by the University of Washington and published Nov. 16 in PLOS ONE.

“When trees die in one place, it can be good or bad for plants elsewhere, because it causes changes in one place that can ricochet to shift climate in another place,” said lead author Elizabeth Garcia, a UW postdoctoral researcher in atmospheric sciences. “The atmosphere provides the connection.”

Read more at: http://phys.org/news/2016-11-large-forest-die-offs-effects-ricochet.html#jCp

Source: Large forest die-offs can have effects that ricochet to distant ecosystems – phys.org