Satellite imagery helps monitor Bavarian forest

Things are looking up in a swath of forest in southern Germany, thanks to innovative funding from the European Union for a project that aims to help policymakers better understand how the forest’s ecosystems work.

The ECOPOTENTIAL project uses satellite images for ecosystem modelling in 25 Protected Areas in Europe (as well as Kenya, the Caribbean and Israel) to address climate change and other threats to ecosystems. In the Bavarian forest, the images and mathematical models of ecosystems, or “Earth Observation tools”, are helping to assess the impact of climate change and pollution, and shape national protection policies.

UN Environment is one of many partners supporting the 2015-2019 ECOPOTENTIAL project, funded by the European Union to the tune of 16 million euros.

Within the ECOPOTENTIAL project, Earth Observation tools and “remote sensing”, including by aircraft and drones, are being used to better understand how vegetation is evolving across the park and over time.
Satellite and drone pictures are detecting patterns of dominant plant species, linking habitat characteristics with terrain, and tracking animal movements. The park administration is also carrying out intensive research on tree regeneration, the role of dead wood, and the impact of global warming and extreme climatic events on the future development of these ecosystems.

Source: Satellite imagery helps monitor Bavarian forest – UN Environment, 2018-08-15

New research unlocks forests’ potential in climate change mitigation

By Scott Miller
New insights into the impact forests have on surface temperature will provide a valuable tool in efforts to mitigate climate change, according to a new research paper co-authored by Clemson University scientist Thomas O’Halloran.

For the first time, scientists have created a global map measuring the cooling effect forests have by regulating the exchange of water and energy between the Earth’s surface and the atmosphere. In many locations, this cooling effect works in concert with forests’ absorption of carbon dioxide. By coupling information from satellites with local data from sensors mounted to research towers extending high above tree canopies, O’Halloran and his collaborators throughout the world have given a much more complete, diagnostic view of the roles forests play in regulating climate.

Their findings have important implications for how and where different types of land cover can be used to mitigate climate change with forest protection programs and data-driven land-use policies. Results of their study were recently published in the journal Nature Climate Change.

Source: New research unlocks forests’ potential in climate change mitigation – Clemson University News and Stories, 2017-04-19