A downtown parking lot is being repaved with nanomaterials. Here’s why.

By Andrew Moore
The tiny rod-like structures have been shown to improve the strength and durability of concrete structures and reduce the carbon footprint of manufacturing cement.

If you were to walk through downtown Greenville, you would likely notice several landmarks, including the Liberty Bridge and the old county courthouse.

While these iconic structures are unique in their own right, they share one commonality: They’re made of concrete. The coarse, gray material is the very foundation of modern infrastructure. It’s been used in the construction of everything from buildings and bridges to roads and sidewalks.

But despite all its benefits of strength and durability, there’s a major downside to using concrete.

The production of cement, which when mixed with water forms the binding agent in concrete, accounts for 5 to 10 percent of all human-caused carbon dioxide emissions, according to the International Energy Agency. These emissions have been on the rise since the industrial revolution and remain the leading cause of global warming.

Over the past decade, though, researchers from across the country have been working together to create a cleaner version of the versatile building material. And now they plan to test the capabilities of their environmentally friendly alternative in Greenville.

The U.S. Endowment for Forestry and Communities, a Greenville-based environmental nonprofit, has partnered with the U.S. Forest Service, Oregon State University, and Purdue University to study a concrete mixture infused with cellulosic nanomaterials.

Cellulosic nanomaterials are produced by breaking down wood to its smallest, strongest components through mechanical and chemical processes similar to making paper. These tiny rodlike structures have diameters 20,000 times smaller than the width of a human hair and can be seen only using an electron microscope, yet they are as strong as steel with only one-fifth the weight.

“Researchers are testing these cellulosic nanomaterials in a wide range of applications from substrate for computer chips, they don’t warp under heat like plastics do, to car and airplane bodies, lighter and stronger than steel,” said Dr. Alan Rudie, a chemist with the U.S. Forest Service’s Forest Products Laboratory in Wisconsin, in a news release. “Our team expects that concrete will be among the first commercial applications.”

Source: A downtown parking lot is being repaved with nanomaterials. Here’s why. – Greenville Journal, 2018-12-05

Long-lived wood products are significant carbon capturers

By Pranjal Mehar
A key finding of the study is that positive climate change mitigation effects can be gained only if efforts are made to use more wood for long-lived wood products.

A new study by the University of Eastern Finland has suggested that the way we use wood mitigate climate change. It also supports the economy.

Forests assume a vital job in the worldwide carbon cycle and add to climate change mitigation. Forests ingest carbon from the environment through photosynthesis and store the carbon in living biomass, dead wood, litter and soil.

When wood is collected, a lot of carbon is expelled from the Forest and would then be able to be put away for a considerable length of time in enduring wood items, for example, wooden houses and furniture. Up until this point, numerous examinations have concentrated on carbon put away in Forest, yet fewer investigations have concentrated on the job of wood items.

A new study intends to fill this gap in knowledge. The study analyzed and applied various methods and models in order to estimate the effects of wood use effects on climate change mitigation and to reveal the environmental, economic and even social effects of wood use.

The examination followed the streams of wood in Lithuania and the Czech Republic beginning from the forest through the wood handling industry until the point when the end products, with an accentuation on carbon conventional and atmosphere moderation impacts.

The outcomes demonstrate that traditional carbon bookkeeping strategies for reap wood items may prompt a huge underestimation of the carbon put away in wood items. The examination discovered that in a few nations, the yearly carbon spending plan in wood items is 40% higher when ascertained with a more definite technique.

Source: Long-lived wood products are significant carbon capturers – Tech Explorist, 2018-11-08

Oregon seeks to become U.S. mass timber hub

By George Plaven
Timm Locke relishes a chance to drive around Portland and showcase the latest commercial buildings made with mass timber, a construction material that uses wood beams and panels instead of concrete and steel.

First stop: Albina Yard, a four-story office building that opened in 2016 featuring cross-laminated timber panels from D.R. Johnson, a lumber company south of Roseburg.

Every piece of cross-laminated timber — or CLT for short — is prefabricated, designed for a specific part of the building, said Locke, director of forest products at the Oregon Forest Resources Institute. That means buildings go up faster, with fewer workers.

Wood is also environmentally superior to steel and concrete, Locke said, because it sequesters carbon and takes less energy to produce.

“There are so many benefits, it doesn’t matter which one you choose to start with,” Locke said.

First developed in Europe, mass timber is now catching on in the U.S., and Oregon is working to position itself as the industry hub, kick-starting rural economies that have traditionally relied on forest products. On Aug. 1, Oregon became the first state to approve language in its building codes allowing for wood-framed buildings up to 18 stories tall.

Source: Oregon seeks to become U.S. mass timber hub – Blue Mountain Eagle, 2018-09-18

This startup wants your next T-shirt to be made from wood

BY ADELE PETERS
Spinnova has found a way to spin any cellulose–wood, potato peels, even old T-shirts–into new, strong fiber.

In a new pilot factory in Jyväskylä, Finland–a city surrounded by forests and known in part for its lumber and paper industries–a startup will soon begin to turn wood pulp into something new: a type of fabric that could eventually compete with cotton.

Making wood into fabric isn’t new, but older wood-based fabrics like rayon use harsh chemicals that can pollute water and poison workers. The new fabric, made by a startup called Spinnova, uses a mechanical process instead of chemicals; the only byproduct is evaporated water, which is reused in production. Unlike cotton, which uses massive amounts of water in areas often prone to droughts, it needs little water, no pesticides, and no farmland.

The new process uses FSC-certified wood pulp that’s ground into a gel-like material called microfibrillated cellulose, which is made of tiny fibers. The material flows through the startup’s patented machinery to create a network of fibers that are spun and dried into a fluffy, firm wool that can be knit or woven into fabric and then made into clothing, shoes, or other textiles.

Source: This startup wants your next T-shirt to be made from wood – Fast Company, 2018-08-01

Fireproof Wood Poised to Save Houses, the Earth

By Emily Pollock
M-Fire’s fire-inhibiting wood looks increasingly important in an industry turning back to wood buildings.

The phrase “wood buildings” conjures up images of flammable, unsafe architecture, but M-Fire Suppression Inc. is looking to change that picture. And it wants its fire-resistant wood to be the new face of ecologically friendly building.

One of the most common tests of a material’s fire resistance is a spread test, where inspectors measure how long it takes fire to spread across the material as compared to control materials. Class A is the most fire-resistant class, and M-Fire is currently the only company making Class A fire-protected cross-laminated timber. To do that, the company infuses wood with surfactants that allow fire inhibitors to migrate into the pockets of oxygen in the wood. The result is a product much eco-friendlier than most traditional fire inhibition. M-Fire is currently the only Class A fire inhibitor with UL Greenguard Gold certification, which means that it’s safe around children and schools.

“We don’t even like the name fire retardant near our brand. We’re a fire inhibitor,” said Steve Conboy, the company’s chairman and general manager. “What happens is, we inhibit fire because we break the chemical reaction in the fire.” The inhibitor breaks the chain of free radicals (H+, OH- and O-) released during combustion, giving the fire nothing to feed on.

The fire protection results in what Conboy calls “defended carbon”: carbon that is stored in the wood and will never be released into the atmosphere. A carbon-absorbing building material gives M-Fire’s wood a distinct advantage over carbon-producing alternatives like structural steel.

Source: Fireproof Wood Poised to Save Houses, the Earth – engineering.com, 2018-07-03

This Concept Uses a Pre-Fabricated Timber System to Enable Modern, Self-Built Homes

by Jack McManus
Space Popular’s design gathers service functions into a central prefabricated core (resembling a Nordic hearth) that DIY-ers can build their own house around.

Solutions from the past can often provide practical answers for the problems of the future; as the London-based design and research firm, Space Popular demonstrate with their “Timber Hearth” concept. It is a building system that uses prefabrication to help DIY home-builders construct their own dwellings without needing to rely on professional or specialized labor. Presented as part of the ongoing 2018 Venice Biennale exhibition “Plots Prints Projections,” the concept takes inspiration from the ancient “hearth” tradition to explain how a system designed around a factory-built core can create new opportunities for the future of home construction.

Realized in the form of a brightly-painted model in the exhibition space at Serra dei Giardini, the Timber Hearth system gathers all the service functions, appliances, and fittings that require professional installation in typical residential buildings and contains them within a prefabricated hearth-like structure.

Fabricated in a factory and sized for shipping in one piece, the core is then installed on site and connected to service grids. After that, the remaining construction (including building the floor platforms, partition walls, facade, and roof) can be completed by the homeowners, either by traditional or contemporary timber-frame methods. According to the designers, this affords reasonably-equipped makers the flexibility, freedom, and affordability to build their own perfect home.

Source: This Concept Uses a Pre-Fabricated Timber System to Enable Modern, Self-Built Homes – arch daily, 2018-06-21

Sizing Up Biofuel Markets

By Tim Portz
The combined export value of wood pellets, ethanol and biodiesel for U.S. producers has flirted with $3 billion since 2012, and depending upon how the final numbers shake out for last year, 2016 may very well be the year this milestone is surpassed. For both wood pellets and fuel ethanol, export numbers have never been higher than they are right now, and all three sectors are eyeing foreign markets as a means to significantly grow their businesses.

An analysis of the same data reveals key and informative differences. While foreign markets are an important part of the overall market picture for fuel ethanol and biodiesel producers, exports account for less than 10 percent of annual production while, from a volumetric perspective, wood pellet production in the U.S. is heavily reliant on foreign markets.

Now, the looming question is, what impact will a Trump administration, which campaigned on a promise to revisit the nation’s trade agreements, have on the export opportunities for each of these industries?

Global Market Leaders
In both the fuel ethanol and wood pellet categories, the U.S. can boast the largest production capacity and the largest share of the global export market. In both cases, U.S. exports outstrip the closest competitor by a wide margin. Wood pellet export volumes for U.S. producers were well over 4 million tons, while Canada has yet to surpass 2 million tons of exports. Brazil is the world’s second leading producer of fuel ethanol, and while production and export volumes there vary from year to year, in 2015, its export volumes were about half of what U.S. producers achieved. Additionally, Brazil is a prominent market for U.S. ethanol producers taking over 100 million gallons in 2015.

Source: Sizing Them Up | Biomassmagazine.com, 2017-03-27

Conference addresses environmental impact of mass timber industry

Organizers of last week’s International Mass Timber Conference in Portland, Ore., devoted a whole track of the three-day event to environmental and sustainability aspects of the mass timber sector — an indication of the importance of sustainability to the tall timber building brand.

Manufacturing of cross laminated timber, or CLT — the product used to construct tall timber buildings — has the potential to revitalize the timber sector and the rural communities in Oregon that have fallen on hard times because of the widespread closure of timber mills across the state, reports Oregon Business.

But experts concede the environmental benefits of CLT are complex and difficult to measure.

Structural engineers look at the lifecycle emissions of CLT when assessing the environmental impact of tall timber buildings. The lifecycle analysis takes account of the greenhouse gas emissions from the harvesting of the wood, through the manufacturing and construction of tall timber buildings, to their eventual demolition.

When taking this cradle-to-grave assessment, the environmental benefits of CLT are not clear.

Source: Conference focuses on mass timber industry | Proud Green Building, 2017-04-03

Lumber prices remain strong as home values improve

Lumber prices continue to be robust two months in a row. Logs are also strong. Home values continue improving with relatively brisk sales and building. Industry manufacturing has improved. Recent trends of lumber, logs, home construction, and housing markets, are compared.

Statistics look quite good this month. Median home value continues to rise, mortgage rates have somewhat stabilized, unsold inventories of homes remain low, albeit creeping up, and housing starts and building permits remain consistently in the 1200s, which is an improvement. But lumber prices and log prices are a big story, along with real estate selling briskly in both Portland and Roseburg.

The log price is holding up at $720. The lumber price has also held for two months in a row, at $360. This is the highest price for studs since 2013, and before that, since 2005. 2013 was the year the snails-pace recovery began in earnest. One year earlier, in 2012, median home prices hit rock bottom ($151,600 in January, 2012). Housing starts moved from the 800’s in 2012 to 1000’s in 2013 and there was a feeling of optimism. During the midst of the Great Recession, mill production levels were at their lowest and the increased demand in 2013 raised the lumber prices. Once mill production increased from basement levels, in anticipation of increased housing starts, prices dropped again. Now we are entering a new cycle.

Source: Lumber prices remain strong as home values improve – nrtoday.com, 2017-04-05