Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia

Yu Feng, Alan D. Ziegler, Paul R. Elsen, Yang Liu1, Xinyue He, Dominick V. Spracklen, Joseph Holden, Xin Jiang1, Chunmiao Zheng and Zhenzhong Zeng

Southeast Asia contains about half of all tropical mountain forests, which are rich in biodiversity and carbon stocks, yet there is debate as to whether regional mountain forest cover has increased or decreased in recent decades. Here, our analysis of high-resolution satellite datasets reveals increasing mountain forest loss across Southeast Asia. Total mean annual forest loss was 3.22 Mha yr−1 during 2001–2019, with 31% occurring on the mountains. In the 2010s, the frontier of forest loss moved to higher elevations (15.1 ± 3.8 m yr−1 during 2011–2019, P < 0.01) and steeper slopes (0.22 ± 0.05° yr−1 during 2009–2019, P < 0.01) that have high forest carbon density relative to the lowlands. These shifts led to unprecedented annual forest carbon loss of 424 Tg C yr−1, accelerating at a rate of 18 ± 4 Tg C yr−2 (P < 0.01) from 2001 to 2019. Our results underscore the immedi-ate threat of carbon stock losses associated with accelerating forest clearance in Southeast Asian mountains, which jeopardizes international climate agreements and biodiversity conservation.

Source: Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia – Nature Sustainability, 2021-06-08

Why trees grow at night

By Swiss Federal Institute for Forest, Snow and Landscape Research WSL
Trees form new cells by using the carbohydrates they produce through photosynthesis. However, it is not primarily the availability of carbohydrates that limits growth, but the water tension in the tree, the so-called water potential, as this study recently published in the journal New Phytologist shows.

The international research team led by Roman Zweifel at the Swiss Federal Institute for Forest, Snow and Landscape Research WSL has come to the surprising conclusion that trees grow primarily at night, and that this trend is largely explained by the level of air dryness. In the world’s first comprehensive study of radial stem growth with an hourly data resolution, the scientists analyzed data recorded over up to eight years on 170 trees of seven common species located at 50 sites all over Switzerland (> 60 Mio data points). Researchers from ETH Zurich and other research institutions in Switzerland and Europe were involved in the study. The sites investigated are part of TreeNet, a network in which stem radius changes of trees have been measured continuously using high-precision point dendrometers in parallel with information about the dryness of air (vapor pressure deficit, VPD) and soil (soil water potential) in Swiss forests since 2011.

The data show that the probability of tree growth varies significantly over the 24 hours of a day: stems shrink under the effect of water stress and expand in a range of 1-200 µm per day, and these fluctuations are superimposed on growth rates of 1-5 µm per hour.

Air humidity is key to tree growth

The research team concluded that VPD plays a key role as it allows for growth mainly at nighttime. In their study, during day time, high VPD severely limited radial stem growth and allowed only little growth, except in the early morning. “The biggest surprise to us was that trees grew even under moderately dry soil conditions when the air was humid enough. Conversely, growth remained very low when the soil was moist but the air was dry,” recalls Roman Zweifel, lead author at WSL. The reason for this is the limited water transport capacity of the trees: as soon as the air becomes drier, trees temporarily lose more water through transpiration than they absorb through their roots. The entire tree comes under tension, its water potential decreases, and growth stops regardless of the availability of carbohydrates.

Source: Why trees grow at night – Phys.org, 2021-06-21

MIT engineers make filters from tree branches to purify drinking water

by Jennifer Chu
The interiors of nonflowering trees such as pine and ginkgo contain sapwood lined with straw-like conduits known as xylem, which draw water up through a tree’s trunk and branches. Xylem conduits are interconnected via thin membranes that act as natural sieves, filtering out bubbles from water and sap.

MIT engineers have been investigating sapwood’s natural filtering ability, and have previously fabricated simple filters from peeled cross-sections of sapwood branches, demonstrating that the low-tech design effectively filters bacteria.

Now, the same team has advanced the technology and shown that it works in real-world situations. They have fabricated new xylem filters that can filter out pathogens such as E. coli and rotavirus in lab tests, and have shown that the filter can remove bacteria from contaminated spring, tap, and groundwater. They also developed simple techniques to extend the filters’ shelf-life, enabling the woody disks to purify water after being stored in a dry form for at least two years.

The researchers took their techniques to India, where they made xylem filters from native trees and tested the filters with local users. Based on their feedback, the team developed a prototype of a simple filtration system, fitted with replaceable xylem filters that purified water at a rate of one liter per hour.

Source: MIT engineers make filters from tree branches to purify drinking water – MIT News, 2021-03-25

Laurel Wilt: Current and Potential Impacts and Possibilities for Prevention and Management

By Rabiu O. Olatinwo, Stephen W. Fraedrich and Albert E. Mayfield III

Abstract
In recent years, outbreaks of nonnative invasive insects and pathogens have caused significant levels of tree mortality and disturbance in various forest ecosystems throughout the United States. Laurel wilt, caused by the pathogen Raffaelea lauricola (T.C. Harr., Fraedrich and Aghayeva) and the primary vector, the redbay ambrosia beetle (Xyleborus glabratus Eichhoff), is a nonnative pest-disease complex first reported in the southeastern United States in 2002. Since then, it has spread across eleven southeastern states to date, killing hundreds of millions of trees in the plant family Lauraceae. Here, we examine the impacts of laurel wilt on selected vulnerable Lauraceae in the United States and discuss management methods for limiting geographic expansion and reducing impact. Although about 13 species belonging to the Lauraceae are indigenous to the United States, the highly susceptible members of the family to laurel wilt are the large tree species including redbay (Persea borbonia (L.) Spreng) and sassafras (Sassafras albidum (Nutt.) Nees), with a significant economic impact on the commercial production of avocado (Persea americana Mill.), an important species native to Central America grown in the United States. Preventing new introductions and mitigating the impact of previously introduced nonnative species are critically important to decelerate losses of forest habitat, genetic diversity, and overall ecosystem value.

Source: Forests | Free Full-Text | Laurel Wilt: Current and Potential Impacts and Possibilities for Prevention and Management – Forests, 2021-02-04

Penn State DuBois professor has the ‘dirt’ on sustainable urban forests

New research published by Robert Loeb, a professor in biology and forestry at Penn State DuBois, outlines his efforts to bring the experience of rural forests to those who live in cities, with an eye toward what Loeb calls “environmental justice.” The article appears in the April issue of the publication Urban Forestry and Urban Greening.

Loeb’s article details new research discoveries about urban forests that veer from his typical concentrations. For decades he has studied forests in locations like New York City and Nashville, stewarding forest regeneration by examining the impact that wildlife and humans alike have on the forest and finding ways to curb this impact. This has led to work in a new urban-forest management protocol, “SAFE” — Soils, Aliens, Fire, Exclosure — with the goal of increasing natural regeneration through soil treatments, alien species treatments, fire surveillance, and fencing to eliminate problematic browsers such as deer.

Loeb took a turn toward research in soils when in 2014 he began to study tree regeneration in an urban forest in Philadelphia known as “The Good Woods,” part of the larger Haddington Woods in Cobbs Creek Park.

“The Good Woods is exceptional in having a mature canopy, a normal layer of leaf litter and organic matter, a large number of native tree seedlings, and less herbivory than typically expected,” said Loeb. “During 2015, an exclosure fence for deer was placed around the Good Woods and an act of arson caused a ground fire in approximately half of the forest.”

What sets the Good Woods apart from other similarly situated urban forests is that many native species seedlings and saplings grow naturally below the canopy created by larger trees. Loeb’s goal is to determine why this happened at this particular site, to hopefully replicate the natural tree regeneration in other cities.

Loeb recalled, “Growing up in the Bronx, I was accustomed to seeing urban forests with only tall trees. One summer I was awarded a scholarship from the Student Conservation Association to conduct research in Vermont. What struck me the most was that the forests there had seedlings that are lacking in urban areas. I’ve been trying throughout my career to sort out this lack of natural regeneration so that people in urban settings can enjoy the beauty of rural forests when we visit urban forests.”

The most trusted theory Loeb has on the difference in soil composition impacting the natural regrowth of new trees is one that he believes is rock-solid, so to speak.

“If you have more rocks, you have less soil. So, naturally you have a smaller population of trees,” he said. “I found many of the urban parks to have a great number of stones and even boulders in the soil. One particular area of the Good Woods is almost free of stones, and the soil there supports a greater growth of young trees.”

These findings could go a long way in helping Loeb to recommend soil studies and remediation in other urban forests. “Soils are a critical issue and need to be treated,” he said. “When I was young, horticulturalists taught me that if you spend $100 to plant a tree, you spend $10 on the tree and $90 on the soil. That is a formula that has not always been in use recently, but a historical perspective that maybe we need to revisit now.”

Source: Penn State DuBois professor has the ‘dirt’ on sustainable urban forests – Penn State University, 2021-02-11

Subscriptions to satellite alerts linked to decreased deforestation in Africa

By Eric Hamilton
Deforestation dropped by 18 percent in two years in African countries where organizations subscribed to receive warnings from a new service using satellites to detect decreases in forest cover in the tropics.

The carbon emissions avoided by reducing deforestation were worth between $149 million and $696 million, based on the ability of lower emissions to reduce the detrimental economic consequences of climate change.

Those findings come from new research into the effect of GLAD, the Global Land Analysis and Discovery system, available on the free and interactive interface Global Forest Watch. Launched in 2016, GLAD provides frequent, high-resolution alerts when it detects a drop in forest cover. Governments and others interested in halting deforestation can subscribe to the alerts on Global Forest Watch and then intervene to limit forest loss.

Source: Subscriptions to satellite alerts linked to decreased deforestation in Africa – University of Wisconsin-Madison, 2021-01-04

Radar vision in the mapping of forest biodiversity from space

By Soyeon Bae, et al
Abstract
Recent progress in remote sensing provides much-needed, large-scale spatio-temporal information on habitat structures important for biodiversity conservation. Here we examine the potential of a newly launched satellite-borne radar system (Sentinel-1) to map the biodiversity of twelve taxa across five temperate forest regions in central Europe. We show that the sensitivity of radar to habitat structure is similar to that of airborne laser scanning (ALS), the current gold standard in the measurement of forest structure. Our models of different facets of biodiversity reveal that radar performs as well as ALS; median R² over twelve taxa by ALS and radar are 0.51 and 0.57 respectively for the first non-metric multidimensional scaling axes representing assemblage composition. We further demonstrate the promising predictive ability of radar-derived data with external validation based on the species composition of birds and saproxylic beetles. Establishing new area-wide biodiversity monitoring by remote sensing will require the coupling of radar data to stratified and standardized collected local species data.

Source: Radar vision in the mapping of forest biodiversity from space – Nature Communications, 2019-10-18

Wildfire prevention through prophylactic treatment of high-risk landscapes using viscoelastic retardant fluids

Also see the article in Wired

Anthony C. Yu, Hector Lopez Hernandez, Andrew H. Kim, Lyndsay M. Stapleton, Ruben J. Brand, Eric T. Mellor, Cameron P. Bauer, Gregory D. McCurdy, Albert J. Wolff, Doreen Chan, Craig S. Criddle, Jesse D. Acosta, Eric A. Appel

Proceedings of the National Academy of Sciences Sep 2019, 201907855; DOI: 10.1073/pnas.1907855116

Significance

Despite strong fire prevention efforts, every year wildfires destroy millions of acres of forest. While fires are necessary for a healthy forest ecology, the vast majority are human-caused and occur in high-risk areas such as roadsides and utilities infrastructure. Yet, retardant-based treatments to prevent ignitions at the source are currently impossible with existing technologies, which are only suited for reactive fire prevention approaches. Here we develop a viscoelastic carrier fluid for existing fire retardants to enhance retention on common wildfire-prone vegetation through environmental exposure and weathering. These materials enable a prophylactic wildfire prevention strategy, where areas at high risk of wildfire can be treated and protected from ignitions throughout the peak fire season.

Abstract

Polyphosphate fire retardants are a critical tactical resource for fighting fires in the wildland and in the wildland–urban interface. Yet, application of these retardants is limited to emergency suppression strategies because current formulations cannot retain fire retardants on target vegetation for extended periods of time through environmental exposure and weathering. New retardant formulations with persistent retention to target vegetation throughout the peak fire season would enable methodical, prophylactic treatment strategies of landscapes at high risk of wildfires through prolonged prevention of ignition and continual impediment to active flaming fronts. Here we develop a sprayable, environmentally benign viscoelastic fluid comprising biopolymers and colloidal silica to enhance adherence and retention of polyphosphate retardants on common wildfire-prone vegetation. These viscoelastic fluids exhibit appropriate wetting and rheological responses to enable robust retardant adherence to vegetation following spray application. Further, laboratory and pilot-scale burn studies establish that these materials drastically reduce ignition probability before and after simulated weathering events. Overall, these studies demonstrate how these materials actualize opportunities to shift the approach of retardant-based wildfire management from reactive suppression to proactive prevention at the source of ignitions.

Source: Wildfire prevention through prophylactic treatment of high-risk landscapes using viscoelastic retardant fluids – PNAS

Eastern forests shaped more by Native Americans’ burning than climate change

By Jeff Mulhollem
Native Americans’ use of fire to manage vegetation in what is now the Eastern United States was more profound than previously believed, according to a Penn State researcher who determined that forest composition change in the region was caused more by land use than climate change.

“I believe Native Americans were excellent vegetation managers and we can learn a lot from them about how to best manage forests of the U.S.,” said Marc Abrams, professor of forest ecology and physiology in the College of Agricultural Sciences. “Native Americans knew that to regenerate plant species that they wanted for food, and to feed game animals they relied on, they needed to burn the forest understory regularly.”

Over the last 2,000 years at least, according to Abrams — who for three decades has been studying past and present qualities of eastern U.S. forests — frequent and widespread human-caused fire resulted in the predominance of fire-adapted tree species. And in the time since burning has been curtailed, forests are changing, with species such as oak, hickory and pine losing ground.

“The debate about whether forest composition has been largely determined by land use or climate continues, but a new study strongly suggests anthropogenic fire has been the major driver of forest change in the East,” said Abrams. “That is important to know because climate change is taking on an ever larger proportion of scientific endeavor.”

Source: Eastern forests shaped more by Native Americans’ burning than climate change – Penn State University, 2019-05-21

Researchers map symbiotic relationships between trees and microbes worldwide

by Taylor Kubota, Stanford University
In and around the tangled roots of the forest floor, fungi and bacteria grow with trees, exchanging nutrients for carbon in a vast, global marketplace. A new effort to map the most abundant of these symbiotic relationships—involving more than 1.1 million forest sites and 28,000 tree species—has revealed factors that determine where different types of symbionts will flourish. The work could help scientists understand how symbiotic partnerships structure the world’s forests and how they could be affected by a warming climate.

In and around the tangled roots of the forest floor, fungi and bacteria grow with trees, exchanging nutrients for carbon in a vast, global marketplace. A new effort to map the most abundant of these symbiotic relationships—involving more than 1.1 million forest sites and 28,000 tree species—has revealed factors that determine where different types of symbionts will flourish. The work could help scientists understand how symbiotic partnerships structure the world’s forests and how they could be affected by a warming climate.

Source: Researchers map symbiotic relationships between trees and microbes worldwide – Phys.org, 2019-05-15